Defense Waste Processing Facility – Optimization Opportunities & Key Performance Factors

Ken Wells, Director of DWPF Operations 9/26/2023

Acronyms

- ARP/MCU Actinide Removal Process / Modular Caustic Side Solvent Extraction Unit
- DWPF Defense Waste Processing Facility
- FY Fiscal Year
- HTF H Tank Farm
- LW Liquid Waste
- MFT Melter Feed Tank
- MTTF Mean Time to Failure
- MTTR Mean Time to Repair
- OGCT Offgas Condensate Tank
- PPT Precipitate Pump Tank (repurposed to transfer sludge solids from SWPF to DWPF)
- PRFT Precipitate Reactor Feed Tank (repurposed to store sludge solids from SWPF)
- RCT Recycle Collection Tank
- SE Strip Effluent
- SEFT Strip Effluent Feed Tank
- SEHT Strip Effluent Hold Tank (located at SWPF)
- SME Slurry Mix Evaporator
- SMECT Slurry Mix Evaporator Condensate Tank
- SPT Sludge Pump Tank
- SRAT Sludge Receipt and Adjustment Tank
- SRMC Savannah River Mission Completion (current Liquid Waste Contractor)
- SRS Savannah River Site
- SSRT Sludge Solids Receipt Tank (located at SWPF)
- SWPF Salt Waste Processing Facility

DWPF Supports the Liquid Waste Mission 🕻

SRS Liquid Waste Facilities

SRMC

DWPF Waste Processing Overview

Canister Processing – Past and Future

- DWPF Canister Production is tied to the overall Liquid Waste System capabilities and salt/sludge inventory
- Full-scale, sludge-only processing (FY96-FY07)
 - Began treating Tank Farms sludge waste (10% of the volume and 50% of the curies)
 - Provide hazard reduction progress while a new salt waste processing approach was determined

Pilot-scale salt and full-scale sludge processing (FY08-FY19)

- Proved that the SWPF technology would work using pilot scale ARP/MCU processes
- Initiated pilot scale salt waste treatment (90% of the volume and 50% of the curies)
- Sludge must be mixed with salt waste to support making glass with current flowsheet
- DWPF canister rate reduced in FY14 to conserve sludge for processing with salt feed

Integration of SWPF with other LW Facilities (FY20)

- Facility modifications
- Program and procedure changes
- Sludge conservation

Full-scale salt and sludge processing (FY21-Completion of Mission)

- Started with SWPF Hot Commissioning then Hot Operations
- Provides full liquid waste system capabilities to finish waste treatment in 2036
- Enables both DWPF and SWPF to operate at maximum rates
- Resuming Full DWPF production in FY24 with ramp-up actions in progress

	End of Fiscal	SRS Cans Poured	
	Year	Yearly	Cum.
	FY96	64	64
	FY97	169	233
	FY98	250	483
>	FY99	236	719
E I	FY00	231	950
Sludge Only	FY01	227	1,177
	FY02	160	1,337
	FY03	115	1,452
	FY04	260	1,712
	FY05	257	1,969
	FY06	245	2,214
-	FY07	160	2,374
	FY08	225	2,599
±	FY09	196	2,795
cU Sa	FY10	192	2,987
	FY11	264	3,251
¥	FY12	277	3,528
1A	FY13	224	3,752
R	FY14	125	3,877
4+	FY15	93	3,970
e	FY16	136	4,106
Sludge + ARP/MCU Salt	FY17	52	4,158
	FY18	15	4,173
1	FY19	34	4,207
	FY20	8	4,215
	FY21	59	4,274
	FY22	45	4,319
Sludge + SWPF Salt	FY23	129*	4,448
	FY24	260	4,708
	FY25	278	4,986
	FY26	282	5,268
	FY27	292	5,560
	FY28	301	5,861
	FY29	183	6,044
	FY30	295	6,339
	FY31	303	6,642
	FY32	282	6,924
	FY33	280	7,204
	FY34	299	7,503
	FY35	319	7,822
1.1	FY36	291	8,113

Optimization – Ramp Up Focus Areas

Reduce processing cycle times

- Optimize consolidation of salt waste and sludge feed
- Increase steam rates to concentrate and treat waste faster
- Maximize waste processing efficiencies thru concurrent activities

Increase quantity of sludge in each process batch

- Make more canisters for every batch
- Increase the time that the DWPF Melter has feed
- Minimize excess tank farms sludge to be treated in 2036

Increase DWPF equipment reliability

- Upgrade critical equipment (cranes and canyon equipment)
- Replace obsolete process and mechanical equipment controls
- Invest where needed to minimize mission completion risk

DWPF Support of SWPF Climb to 9 Mgal/yr

7

Key Production Affecting Equipment

Overall Facility Availability

- Track process impacting equipment failures
 - Main Process Cell Crane
 - Canyon Equipment (pumps, agitators, cooling coils, vessels)
 - Canister Welder
 - Shielded Canister Transporter
- Extend Mean Time to Failure (MTTF) with reliability upgrades
- Reduce Mean Time to Repair (MTTR) with task-ready parts, paper, people

DWPF Waste Processing Canyon (Photo Taken Prior to Radioactive Operations)

Key Performance Factors

Batch Cycle Times (System Plan Batch Size)

SRAT (transfers in/out, chemicals, concentration, sampling)

- Varies based on number of Salt (Strip Effluent) additions
- 2 Salt = 14 Days
- 1 Salt = 7 Days
- Optimized Salt & Sludge = 4 Days & 4.5 Canisters
- SME (process / canister decon frit, concentration, sampling, transfer)
 - Varies based on number of canisters decontaminated
 - Optimized Salt & Sludge = 4 Days & 4.5 Canisters
- RCT (wastewater collection, chemicals, sampling, transfer)

Canister production

- System Plan sized SRAT batches (4 days) support pouring 4.5 canisters / week
- Larger SRAT batches (5-6 days) support pouring 6 canisters / week and more time for repairs

DWPF - Melt Cell

Performance Indicator Examples

CAB 10